Catalogue 
 Ressources numériques 
 Nouveautés 
 Liens utiles 
 Mon compte 
   
Recherche rapideRecherche avancéeRecherche alphabétiqueHistoriqueInformation
Recherche    Modifier la recherche  
> CERGY
 
Elargir la recherche
 
 
 Parcourir le catalogue
  par auteur:
 
  •  
  •  Lachand-Robert , Thomas
     
     
     
     Affichage MARC
    Auteur : 
    Lachand-Robert , Thomas
    Titre : 
    Analyse harmonique, distributions, convolution , Thomas Lachand-Robert
    Notes : 
    Référence de l'article : a142
    Volume : base documentaire : TIP052WEB
    Publié dans : Techniques de l'ingénieur. Mathématiques
    Date de publication : 1993/11/10
    L'analyse harmonique est, à l'origine, la branche des mathématiques qui traite des signaux périodiques , ou quasi périodiques (avec une définition que nous préciserons dans le cours de cet article). Introduite par Fourier pour l'étude de l'équation de la chaleur, où il remporta un grand succès, elle est très vite devenue un outil essentiel non seulement du mathématicien (pour la résolution de certaines équations, comme les équations des ondes ou les équations de convolution), mais aussi du physicien (pour les phénomènes d'ondes ou de propagation, l'optique, etc.), de l'astronome (mécanique céleste, spectroscopie), de l'électricien (équations des circuits électriques) ; elle trouve des applications même en musique (car les sons sont précisément des signaux sonores périodiques), d'où elle tire d'ailleurs son attribut d'harmonique. Ces applications n'ont rien perdu de leur importance, mais elles se sont augmentées de bien d'autres depuis qu'on a généralisé le concept de décomposition en série de Fourier , applicable aux seules fonctions périodiques, en une transformation de Fourier , utilisable sur un bien plus grand nombre de fonctions. Les idées de base de l'analyse harmonique sont très simples, et peuvent essentiellement se résumer dans cette profession de foi : tout ramener à des fonctions de base dont les propriétés sont bien connues (fonctions sinus et cosinus, ou exponentielle), en exprimant les « fonctions générales » sous la forme de sommes, ou plus généralement d'intégrales, de telles « fonctions élémentaires ». Mais leur application pratique pose un certain nombre de difficultés tant sur le plan théorique (qu'est-ce au juste qu'une « fonction générale » ?) que sur le plan pratique (comment réaliser une telle décomposition , ou au contraire comment recomposer la fonction à partir de son expression dans ces fonctions élémentaires ; quelles sont les propriétés de l'image décomposée d'une fonction, etc.). Ces problèmes ont été énormément débattus par les mathématiciens depuis le siècle dernier, mais ce n'est qu'assez récemment qu'une solution pleinement satisfaisante a été trouvée, en fournissant un cadre élémentaire et général à la transformation de Fourier (et à bien d'autres questions mathématiques par ailleurs) : la théorie des distributions, conçue par L. Schwartz dans les années 50. Nous en exposerons donc en premier les principaux éléments, un peu comme on place le décor avant de commencer la pièce de théâtre. Nous évoquerons au passage le concept important de convolution de deux fonctions ou de deux distributions, qui joue un rôle essentiel par exemple en électronique ou en optique. Nous expliquerons ensuite, dans la troisième section, la notion de transformée de Fourier, ainsi que ses propriétés usuelles. Les séries de Fourier, bien qu'antérieures historiquement, ne seront expliquées que dans la quatrième section, car leurs propriétés résultent très simplement de celles de la transformation de Fourier. Le calcul pratique des transformées de Fourier, ou des séries de Fourier, est abordé dans la cinquième section. Il existe un certain nombre de méthodes algébriques permettant de passer d'une fonction à sa transformée, et réciproquement; de plus, les transformées d'un grand nombre de fonctions sont connues : nous en avons donné une liste assez longue, mais nullement exhaustive : il existe de gros tomes entièrement constitués de telles listes ! De nos jours, les ordinateurs permettent de calculer numériquement la transformée de Fourier d'une fonction définie par un certain nombre de valeurs (des mesures de laboratoire par exemple) ; aussi avons nous jugé important de parler de l'algorithme de transformation de Fourier rapide (bien connu sous son acronyme TFR ). La notion de transformation de Fourier a connu bien des développements depuis sa création, et la sixième section aborde un certain nombre d'entre eux : on y parle notamment de la transformation de Laplace , qui permet le traitement de fonctions qui n'ont pas de transformée de Fourier, et s'applique bien à la résolution de certaines équations différentielles, ainsi que d'une nouveauté très prometteuse qui prend beaucoup d'extension depuis sa création vers 1980 : la transformée en ondelettes . Avant d'aborder ce programme, nous donnons une présentation de l'histoire assez mouvementée de l'analyse harmonique. Celle‐ci a évidemment un intérêt propre, mais également un but pédagogique ; car si nous avons expliqué les raisons qui rendent souhaitable un exposé basé sur les notions les plus générales et les plus exactes mathématiquement, seule la chronologie des découvertes permet de bien comprendre les raisons qui ont poussé de si nombreux savants à explorer ou approfondir ces domaines, en utilisant souvent des méthodes très approximatives - pour ne pas dire douteuses -, en l'absence de ces justifications théoriques précises qui sont données dans le reste de cet article.
    URL: 
    https://www.techniques-ingenieur.fr/base-documentaire/sciences-fondamentales-th8/mathematiques-fondamentales-analyse-42103210/analyse-harmonique-distributions-convolution-a142/
    https://doi.org/10.51257/a-v1-a142
    Ajouter à ma liste 
    Exemplaires
    Pas de données exemplaires


    Pour toute question, contactez la bibliothèque
    Horizon Information Portal 3.25_france_v1m© 2001-2019 SirsiDynix Tous droits réservés.
    Horizon Portail d'Information