Catalogue 
 Ressources numériques 
 Nouveautés 
 Liens utiles 
 Mon compte 
   
Recherche rapideRecherche avancéeRecherche alphabétiqueHistoriqueInformation
Recherche    Modifier la recherche  
> CERGY
 
Elargir la recherche
 
 
 Parcourir le catalogue
  par auteur:
 
  •  
  •  Dorkenoo , Kokou D.
     
  •  
  •  Fort , Alain
     
     
     
     Affichage MARC
    Auteur : 
    Dorkenoo , Kokou D.
    Fort , Alain
    Titre : 
    Matériaux polymères pour l'optique Propriétés et applications , Kokou D. Dorkenoo, Alain Fort
    Notes : 
    Référence de l'article : e6430
    Volume : base documentaire : TIB450DUO
    Publié dans : Techniques de l'ingénieur. Matériaux pour l'optique et les lasers
    Date de publication : 2012/10/10
    Les professionnels de l'optique se plaisent souvent à pronostiquer que l'optique sera au XXI e siècle ce que l'électronique fut pour le siècle dernier. Ce défi est motivé par l'essor sans précédent de nouvelles technologies faisant appel à de nouveaux matériaux aux propriétés originales souvent multiples ( smart materials ). Dans cette évolution, les matériaux organiques, et particulièrement les polymères spécialement fonctionnalisés pour les applications recherchées, jouent un rôle sans cesse grandissant. En effet, outre leur coût peu élevé, ces matériaux bénéficient de deux avantages particulièrement importants par rapport aux matériaux inorganiques. D'une part, en tant que composants organiques, leurs propriétés sont directement liées aux caractéristiques propres des motifs élémentaires réitérés formant leurs chaînes, ainsi que des molécules éventuellement incorporées dans le matériau. Il est dès lors possible de doter les polymères de propriétés spécifiques en introduisant dans ces matériaux (par dopage ou greffage) des molécules possédant les propriétés particulières adaptées aux fonctionnalités visées. D'autre part, la possibilité de modéliser et de prédire assez correctement les propriétés des composants moléculaires est un avantage déterminant dans la recherche de nouveaux matériaux performants. On comprend dès lors que les progrès fantastiques de la chimie organique, capable de synthétiser à façon des molécules originales possédant des propriétés spécifiques, puis de les assembler sous forme de chaînes, ont accompagné l'essor des matériaux polymères pour de nombreuses applications. Dans le domaine de l'optique, l'utilisation de matériaux formés à partir de polymères fonctionnalisés est relativement récente mais en plein essor. Ces polymères font l'objet d'études très nombreuses car outre leurs nombreux avantages déjà évoqués, certaines de leurs performances peuvent à présent égaler, voire dépasser, celles des matériaux inorganiques plus traditionnels. C'est ainsi que dans le domaine grand public de la lunetterie, les matériaux organiques n'ont cessé de se développer pour se substituer progressivement aux matériaux minéraux et représenter la majorité des verres vendus dans les pays industrialisés. Dans le domaine des télécommunications où les matériaux inorganiques sont encore très largement dominants, les organiques deviennent des candidats très prometteurs pour des applications spécifiques, où leur interaction très forte avec la lumière (sections efficaces d'absorption élevées, hauts rendements de luminescence, accordabilité sur une large bande spectrale) et leurs réponses optiques non linéaires ultrarapides peuvent être des paramètres déterminants. L'optimisation toujours plus poussée des motifs moléculaires fonctionnels qui composent les polymères, ainsi que la possibilité de contrôler et de moduler leurs propriétés à l'échelle submicronique, ouvrent des perspectives particulièrement exaltantes pour la fabrication de dispositifs passifs et actifs pour l'optique intégrée et plus largement pour la photonique organique. Avec les progrès obtenus dans le domaine des polymères conjugués semi-conducteurs organiques, on assiste à l'avènement d'une véritable optoélectronique organique dont les applications multiples sont en train de bouleverser le paysage industriel (par exemple, via l'utilisation de diodes organiques électroluminescentes pour l'éclairage, l'affichage sur petits ou très grands écrans, souples ou non). L'optoélectronique organique est ainsi appelée dans un avenir proche à concurrencer très sérieusement les technologies « inorganiques » dans le domaine des lasers, des diodes électroluminescentes, des capteurs et actuateurs, des mémoires optiques ou de la conversion photovoltaïque.
    URL: 
    https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/applications-des-plastiques-42141210/materiaux-polymeres-pour-l-optique-e6430/
    https://doi.org/10.51257/a-v3-e6430
    Ajouter à ma liste 
    Exemplaires
    Pas de données exemplaires


    Pour toute question, contactez la bibliothèque
    Horizon Information Portal 3.25_france_v1m© 2001-2019 SirsiDynix Tous droits réservés.
    Horizon Portail d'Information