Catalogue 
 Ressources numériques 
 Nouveautés 
 Liens utiles 
 Mon compte 
   
Recherche rapideRecherche avancéeRecherche alphabétiqueHistoriqueInformation
Recherche    Modifier la recherche  
> CERGY
 
Elargir la recherche
 
 
 Parcourir le catalogue
  par auteur:
 
  •  
  •  Hasnain , Syed Khursheed , 1975-....
     
  •  
  •  Gaussier , Philippe , 1967-....
     
  •  
  •  Mostafaoui , Ghilès , 1978-....
     
  •  
  •  Bailly , Gérard , 19..-.... , linguiste
     
  •  
  •  Chetouani , Mohamed
     
  •  
  •  Marin , Ludovic , 1967-....
     
  •  
  •  Université de Cergy-Pontoise , 1991-2019
     
  •  
  •  École doctorale Sciences et ingénierie , Cergy-Pontoise, Val d'Oise
     
  •  
  •  Equipes Traitement de l'Information et Systèmes , Cergy-Pontoise, Val d'Oise
     
     
     
     Affichage MARC
    Auteur : 
    Hasnain , Syed Khursheed , 1975-....
    Titre : 
    Synchronisation et coordination interpersonnelle dans l'interaction Homme-robot , Syed Khursheed Hasnain ; sous la direction de Philippe Gaussier et de Ghilès Mostafaoui
    Editeur : 
    2014
    Notes : 
    Titre provenant de l'écran-titre
    Ecole(s) Doctorale(s) : École doctorale Sciences et ingénierie (Cergy-Pontoise, Val d'Oise)
    Partenaire(s) de recherche : Equipes Traitement de l'Information et Systèmes (Cergy-Pontoise) (Laboratoire)
    Autre(s) contribution(s) : Gérard Bailly (Président du jury) ; Philippe Gaussier, Ludovic Marin (Membre(s) du jury) ; Lola Canamero, Mohamed Chetouani (Rapporteur(s))
    Thèse de doctorat STIC (sciences et technologies de l'information et de la communication) - Cergy Cergy-Pontoise 2014
    As robots start moving closer to our social and daily lives, issues of agency and social behavior become more important. However, despite noticeable advances in Human Robot Interaction (HRI), the developed technologies induce two major drawbacks : (i) HRI are highly demanding, (ii) humans have to adapt their way of thinking to the potential and limitations of the Robot. Thereby, HRI induce an important cognitive load which question the acceptability of the future robots. Consequently, we can address the question of understanding and mastering the development of pleasant yet efficient human-robot interactions which increase self- esteem, engagement (or pleasure), and efficacy of the human when interacting with the machine.In this race for more user-friendly HRI systems (robotic companion, intelligent objects etc.), working on the technical features (the design of appearance and superficial traits of behavior) can contribute to some partial solutions for punctual or short-term interactions. For instance, a major focus of interest has been put on the expressiveness and the appearance of robots and avatars. Yet, these approaches have neglected the importance of understanding the dynamics of interactions.In our opinion, intuitive communication refers to the ability of the robot to detect the crucial signals of the interaction and use them to adapt one's dynamics to the other's behavior. In fact, this central issue is highly dependent on the robot's capabilities to sense the human world and interact with it in a way that emulates human-human interactions.In early communication among humans, synchrony was found to be a funda- mental mechanism relying on very low-level sensory-motor networks, inducing the synchronization of inter-individual neural populations from sensory flows (vision, audition, or touch). Synchrony is caused by the interaction but also sustains the interaction itself in a circular way, as promoted by the enaction approach. Consequently, to become a partner in a working together scenario, the machine can obtain a minimal level of autonomy and adaptation by predicting the rhythmic structure of the interaction to build reinforcement signals to adapt the robot behavior as it can maintain the interest of the human in more long-term interactions.More precisely, as we are aiming for more intuitive and natural HRI, we took advantages of recent discoveries in low-level human interactions and studied Unintentional Synchronizations during rhythmic human robot interactions. We argue that exploiting natural stability and adaptability properties of unintentional synchronizations and rhythmic activities in human-human interactions can solve several of the acceptability problems of HRIs, and allow rethinking the current approaches to design them.
    As robots start moving closer to our social and daily lives, issues of agency and social behavior become more important. However, despite noticeable advances in Human Robot Interaction (HRI), the developed technologies induce two major drawbacks : (i) HRI are highly demanding, (ii) humans have to adapt their way of thinking to the potential and limitations of the Robot. Thereby, HRI induce an important cognitive load which question the acceptability of the future robots. Consequently, we can address the question of understanding and mastering the development of pleasant yet efficient human-robot interactions which increase self- esteem, engagement (or pleasure), and efficacy of the human when interacting with the machine.In this race for more user-friendly HRI systems (robotic companion, intelligent objects etc.), working on the technical features (the design of appearance and superficial traits of behavior) can contribute to some partial solutions for punctual or short-term interactions. For instance, a major focus of interest has been put on the expressiveness and the appearance of robots and avatars. Yet, these approaches have neglected the importance of understanding the dynamics of interactions.In our opinion, intuitive communication refers to the ability of the robot to detect the crucial signals of the interaction and use them to adapt one's dynamics to the other's behavior. In fact, this central issue is highly dependent on the robot's capabilities to sense the human world and interact with it in a way that emulates human-human interactions.In early communication among humans, synchrony was found to be a funda- mental mechanism relying on very low-level sensory-motor networks, inducing the synchronization of inter-individual neural populations from sensory flows (vision, audition, or touch). Synchrony is caused by the interaction but also sustains the interaction itself in a circular way, as promoted by the enaction approach. Consequently, to become a partner in a working together scenario, the machine can obtain a minimal level of autonomy and adaptation by predicting the rhythmic structure of the interaction to build reinforcement signals to adapt the robot behavior as it can maintain the interest of the human in more long-term interactions.More precisely, as we are aiming for more intuitive and natural HRI, we took advantages of recent discoveries in low-level human interactions and studied Unintentional Synchronizations during rhythmic human robot interactions. We argue that exploiting natural stability and adaptability properties of unintentional synchronizations and rhythmic activities in human-human interactions can solve several of the acceptability problems of HRIs, and allow rethinking the current approaches to design them.
    Configuration requise : un logiciel capable de lire un fichier au format : text/html
    Ajouter à ma liste 
    Exemplaires
    Pas de données exemplaires


    Pour toute question, contactez la bibliothèque
    Horizon Information Portal 3.25_france_v1m© 2001-2019 SirsiDynix Tous droits réservés.
    Horizon Portail d'Information